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ABSTRACT OF THE THESIS

Spot, an Algorithm for Low-Resolution, Low-Contrast, Moving Object-Tracking with a
Non-Stationary Camera

by

Christopher Lee Crutchfield

Master of Science in Electrical Engineering (Intelligent System, Robotics, and Control)

University of California San Diego, 2023

Professor Curt Schurgers, Chair
Professor Ryan Kastner, Co-Chair

The ability to track moving objects in a video stream is helpful for many applications,

from pedestrian and vehicle tracking in a city to animal tracking for ecology and conservation.

This write-up introduces Spot, an algorithm for moving object tracking in low-resolution, low-

contrast videos. This write-up will discuss two motivating examples to guide the development of

Spot–satellite-based surveillance of vehicles in cityscapes and animal tracking using drones for

ecological purposes.

Spot uses image processing techniques to generate a pipeline to track moving objects

frame-to-frame. It then leverages Bayesian Filtering techniques to use the frame-to-frame motion

xii



to track individual identity between consecutive frames.

Each stage of Spot’s pipeline–both image processing and the Bayesian Filtering portions

of the pipeline–introduces many parameters. To determine which parameters are ideal for a

particular dataset, a design space exploration tool, dubbed Sherlock, is used to choose the optimal

parameters. As part of this, we evaluate multiple possible objective functions and demonstrate

the importance of selecting an appropriate one.

Spot is competitive with other modern, moving object-tracking algorithms on cityscape

data, outperforming others in some of the metrics presented. For tracking animals from drone

footage, Spot demonstrated an ability to track wildlife at a similar rate to its performance in

some cityscape videos.
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Chapter 1

Introduction

Object tracking in video footage is a common problem encountered in many applications.

In this context, the “object” is anything we want to follow within the video. For example,

in surveillance applications, this could be any person moving into the environment we are

monitoring. Applications are vast, from tracking comets in the sky to a football in a sports

broadcast.

Within this ample application space of object tracking in videos, we are specifically

interested in the problem when we need to track multiple small, hard-to-find objects. More

accurately, the objects themselves can be large, but in the video, each object is only a few pixels

in area. As such, these objects have few distinguishing features, making them hard to keep track

of. In addition, often, these small objects are hard to distinguish from the background. This

specific subset of tracking problems can occur in a variety of applications. For example, the

camera could be on a satellite used to track cars in urban spaces. This is useful for monitoring

traffic conditions, aiding in traffic congestion planning, etc. Because of the distance between

the satellite and Earth, these cars will appear as tiny moving objects in the video, occupying

only a small number of pixels. A similar challenge can occur when using drones for wildlife

monitoring, as seen in Crutchfield et al.[6] with baboons. In this case, the distance between the

camera and the object is much smaller. Still, the animals being tracked can also be much smaller,

resulting in the challenge of tracking tiny objects within a video.

1



We aim to focus on this class of tracking problems, where we need to track multiple

objects that appear small within the video. Specifically, we consider objects that are fewer than

30 by 30 pixels and are moving with respect to their background. In common applications, such

as the vehicle and wildlife tracking examples mentioned above, the objects are not engineered to

stand out against the background. This is a common feature of real-world tracking problems: the

objects we are interested in often do not naturally stand out. As such, we will assume that the

contract between the moving objects and their background is small. That is to say, we will focus

on targets with an average luminance of less than 0.2. The luminance of an object is calculated

by doubling the object’s size so that its region is equal parts background and foreground, then

calculating the standard deviation for each object.

Furthermore, as also seen in the earlier examples, we are often interested in tracking

more than one object in a scene, often many of them. The problem we are considering is thus

that of tracking many objects in video footage, where each object is only represented by a few

pixels with relatively low contrast compared to the background.

To constrain our problem, we will specifically consider scenarios where the camera is

semi-stationary. In the traffic example, this refers to the satellite view being that of a fixed eye

in the sky, which is typically the case of the time scales under consideration. In the wildlife

monitoring example, this would mean that the drone would be hovering in a position lock.

These assumptions are not unreasonable and cover an important set of object-tracking scenarios.

However, note that the camera is not fixed in the scenarios and that small position perturbations

are likely to occur. As our example scenarios, and common applications in which these tracking

problems manifest, rely on aerial camera platforms, we will assume that these perturbations will

be present and that we will need to tailor our solution accordingly. In addition, the background

against which the objects (cars, animals, etc.) move is not technically fixed, even if the camera

is absolutely stationary. For example, clouds may cast moving shadows, wind may cause the

movement of trees and shimmer on the water, or other changes may occur. We will refer to

the effects of slight camera motion and this background changes as “pseudo-motion” of the

2



background. Our goal is to achieve object tracking that is robust to this pseudo-motion.

1.1 Problem Specification

The problem research that we will address in this thesis can thus be summarized as:

Tracking of multiple moving targets from semi-stationary video footage under the following

constraints:

• Targets are moving with respect to the background.

• Targets which are less than 30×30 pixels.

• Targets have an average luminance of less than 0.2.

• There may be pseudo-motion from an unfixed camera, limited such that it affects less than

20% of the total pixels.

• There may be pseudo-motion from objects within the scene.

We will present a general solution to this problem. We will describe our proposed

algorithm, dubbed Spot. We will then discuss a methodology to select appropriate algorithm

parameter settings and evaluate its performance. Specifically, we will use the two examples

of motivation, traffic monitoring, and baboon monitoring as evaluation scenarios from vastly

different application domains. However, the proposed approach is generic and not constrained to

only these examples.

1.2 Related Work

The primary space we will consider for algorithms that fit the criteria presented in

Section 1.1 is vehicle tracking from satellite footage, which is more prevalent than applications

in wildlife. As both examples we will examine fit the above criteria, these algorithms should

largely be transferable between both use cases.
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Yin et al. [22] provide a recent overview of the space, which we can use for comparison.

Throughout the remainder of this write-up, we will examine four algorithms as they compete

most closely with Spot based on the average F1 scores provided by Yin et al. [22].

The first of these algorithms is Adaptive Gaussian Mixture Model (AGMM) [10]. AGMM

extends existing methods for using GMMs for modeling pixels and improving upon the process of

background subtraction. It does this by learning variations in the background. This compensates

for wind, shimmering water, or other environment-based pseudo-motion. AGMM improves upon

previous work with GMMs by using multiple learning rates to better account for scenarios where

static objects are placed in a scene. As with the previous work on GMMs, AGMM expects a

static camera, the movement from a satellite or drone may produce extra noise during detection.

AGMM may also struggle with the low-contrast nature of the videos as laid out in Section 1.1.

Next, we consider ClusterNet [13], which uses a two-stage algorithm to look for motion.

The first is ClusterNet, an algorithm that produces regions of interest based on motion clusters.

These regions of interest are then fed into FoveaNet, which is a consensus method for determining

whether the region of interest to determine if a vehicle or vehicles are present. The output of

FoveaNet is the vehicles within the cluster. Likely, FoveaNet’s focus on vehicles will not translate

well to different spaces, such as our wildlife tracking problem.

Third is D&T presented by Ao et al. [2]. D&T, much like the algorithm we will present

in Chapter 2, D&T leverages a Bayesian Filter, specifically, a Kalman Filter. It assigns each

vehicle to be tracked, a Kalman filter at the start. Initially, accelerations are assumed to be zero

and corrected later. The algorithm makes assumptions about the kind of movement expected

as a step of its Kalman Filter. Then hypothesis of the next step is associated with a track.

These associations are then used to update the overall Kalman Filter. As this algorithm makes

assumptions about movement, particularly in the prediction step of the Kalman Filter, we expect

it to perform more poorly on targets that do not match the moving vehicle assumptions.

The final like-algorithm we will consider is Motion Model Baseline (MMB) presented

by Yin et al. [22]. MMB uses the “spatial-temporal information” encoded in videos while
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“suppressing false alarms in the background” [22]. MMB assumes the background is mainly

unchanging but may be noisy. MMB makes some assumptions about the shape to filter out the

noise: the target object “has a regular geometrical pattern, texture shape, and motion models,”

and noise usually does not [22]. This assumption does not necessarily hold for soft, bodied

objects that may not have regular geometrical patterns. Once it has the background removed,

it can generate regions of interest. These regions may be incomplete. It addresses this by

leveraging a model of the background. Finally, it makes some assumptions about the trajectory

being ”continuous and regular” [22], which is likely invalid for more sporadic animals.

The next chapter will formally introduce our contribution to the space, a generic moving-

object detection algorithm called Spot. In later chapters, we will evaluate Spot against the vehicle

tracking problem other like-algorithms presented here aim to solve and the baboon tracking

problem, which also fits the constraints that Spot was designed to solve as listed in Section 1.1.
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Chapter 2

Spot Algorithm

The previous chapter discussed the general moving object tracking problem and its many

applications. It further provided two representative example applications we will evaluate Spot

against, satellite-based vehicle tracking and drone-based wildlife tracking, specifically baboons.

These two examples were chosen because they fit the constraints in Section 1.1. That is to say,

they are domains where the subjects of interest are small with respect to the frame, the subjects

move with respect to the background, and they are low-contrast. This chapter proposes a solution

to the moving-object tracking problem called Spot.

2.1 Assumptions

To begin our construction of Spots, we make the observation, as laid out in our constraints,

that objects tracked from the camera footage have a reduced number of pixels available–an aver-

age of 30×30 pixels–and a low luminance–less than 0.2. This makes tracking them incredibly

challenging. Therefore, we cannot expect methods that only look at a single frame to identify

moving objects consistently. Instead, we shall focus on methods that exploit both temporal

locality–the relationships between consecutive frames–and spatial locality–the relationship be-

tween nearby pixels. To do this, we introduce our first assumption, (1) The background scene

being observed does not change drastically from frame to frame. Therefore, the changes between

the current and previous frames constitute the foreground–our regions of interest. We can then
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use this assumption to look for changes between frames by comparing pixel intensities.

Our following observation in the construction of Spot is that the camera moves with

respect to the background introducing pseudo-motion. To correct this, we will aim to “fix” the

camera position of previous frames to match the camera position of the current frame. To do

so, we must make another assumption (2) the camera must be relatively stable so that when the

frames are adjusted, few image artifacts are created. The more a frame moves, there is less of the

image to compare against, and therefore the realignment is less accurate. Since the previously

stated goal is to compare intensities, if the camera moves significantly, the data to compare

against will not be present. Therefore, this assumption will hold.

Finally, we need a way to find the same objects between two frames to perform this

alignment. Therefore, our final assumption is (3) the background of the video must be sufficiently

featureful. The background must have well-distributed regions of sufficiently different contrast

levels to select unique, common features between frames. This assumption will allow us to align

the current video frame with previous frames, allowing us to compare them more easily. This

assumption will hold almost any real-world dataset looking at a land-based environment.

To summarize, the three assumptions that Spot makes are:

1. The observed background scene does not change drastically from frame to frame. There-

fore, the changes between the current and previous frames constitute the foreground, our

region of interest.

2. The camera must be relatively stable to create few image artifacts when the frames are

adjusted.

3. The background of the video must be sufficiently featureful. The background must have

well-distributed regions of sufficiently different contrast levels to select unique, common

features between frames.
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2.2 Pipeline

In the remaining sections of this chapter, we will present the pseudocode outline of Spot.

Algorithm 2 will demonstrate that it is pipelined in nature. The subsequent sections will discuss

each of the components of that pipeline in more detail. Spot takes F as an input parameter. F

represents the list of valid frames from a singular video. The output of Spot is represented by R,

which is the set of moving objects discovered by Spot per frame.

To best approximate this pipeline, we consider each stage as a dimensionality reduction,

taking an input of one dimensionality and reducing it to a new dimensionality.

Algorithm 2. Spot Pipeline
Input: F
Output: R

H← /0 ▷ Queue of historical frames
R← /0 ▷ Results of the moving object detection
Φ← /0 ▷ Particle filters with one matching each detected region
for Ft ∈ F do

Pt ← preprocess frame(Ft , k) ▷ See Algorithm 3
At ← motion detection(Pt ,H) ▷ See Algorithm 4
Rt ← detect blobs(At) ▷ See Algorithm 5
Tt ← calculate transformation matrix(Pt ,Pt−1) ▷ See Algorithm 4.1.1
Rt ,Φ← particle filter(Rt ,Tt ,Φ) ▷ See Algorithm 6
R← R∪{Rt}

end for

At the beginning of the algorithm, we initialize an empty queue to hold our list of

historical frames, H. This will be used to be able to help us track motion later. We then create

an empty set to hold our final results, R. The final initialization step is to create an empty set of

Particle Filters, Φ, which will be used to track our objects over time. Then we loop over each

frame from the video, performing each step of our pipeline.

After Spot has performed preprocess_frame and motion_detection, the following

dimension reduction has been performed, where Z is the set of integers, B is the set of booleans,

m represents the total number of pixels in the current frame, Ft , and c represents the total number
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of color channels of the current frame, Ft .

Zm×c⇒ Bm (2.1)

This represents the reduction of a single frame down to a motion mask. Given this motion

mask, in detect_blobs, we perform the following action, where r are the number of the blobs

detected by blob detection.

Bm⇒ Zr×2 (2.2)

Finally, combining both of these steps, it is clear that Spot performs the following

reduction.

Zm×c⇒ Zr×2 (2.3)

The pipeline and its respective dimensionality reductions are the primary contributions

of this write-up. Within the next sections, we will discuss each stage in that pipeline and will

note any additional contributions as they come up.

2.3 Preprocess the image

Algorithm 3. Preprocess Frame
Input: Ft
Output: Pt

kp← kernel from configuration()

Pt ← convert to grayscale(Ft)
Pt ← Pt ∗ kp

As indicated above, the combination of preprocessing and motion detection must trans-

form the current frame into a motion mask where 0 represents no motion, and a value of 1
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Figure 2.1. The results of Algorithm 3 when applied to one frame of a sample video

represents motion. As our motion detection portion, which will be further discussed in Sec-

tion 2.4, of the pipeline requires Zm, and our input frame is Zm×c, we must combine the results

from motion detection across multiple color channels or choose a single color channel to run

motion detection against.

There are many ways to approach this, we have experimentally determined that us-

ing a simple grayscale color transformation performs well, allowing us to go from our input

frame dimension to the required motion-detection input frame dimension. We represent this

transformation as Zm×c⇒ Zm

This still leaves some flaws in the image that are still necessary to correct, such as intensity

differences caused by sensor imperfections. We blur the grayscaled frame by convolving a kernel

with the grayscale frame. The kernel convolved with the frame is one of the parameters that can

be controlled for the algorithm.

The details of these steps can be seen in Algorithm 3, where Ft is a single frame, kp is

the blur kernel pulled from configuration, and Pt is the preprocessed frame. The results of this

process can be seen in Figure 2.1
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2.4 Motion Detection

Algorithm 4. Spot Motion Detection
Input: Pt ,H
Output: At

h← history count from configuration()
H ′← /0
M← /0
Q← /0

if count(H) = h then
H.pop()

end if
for Hi ∈ H do

H ′i ,Mi← register history frames(Hi,Pt) ▷ See Algorithm 4.1
H ′t ← H ′∪{Hi}
M←M∪{Mi}

Q← quantize frame(H ′i ,Q) ▷ See Algorithm 4.2
end for

H ′.push(Pt)

Q← quantize frame(Pt ,Q)
Wt ← generate weights(Q) ▷ See Algorithm 4.3
Dt ← history of dissimilarity(Pt ,H ′) ▷ See Algorithm 4.4
It ← intersect frames(Q,H ′) ▷ See Algorithm 4.5.1
Ut ← union intersected frames(It) ▷ See Algorithm 4.5.2
At ← subtract background(At) ▷ See Algorithm 4.6
At ← moving foreground(Dt ,At ,Wt) ▷ See Algorithm 4.7
At ← apply masks(At ,M) ▷ See Algorithm 4.8

In this case, since we had the preprocess_frame step reduce the dimensionality of our

input frame to be compatible with our motion detection model, we can have the motion detection

perform directly on the output of the previous step.

We will leverage portions of the algorithm proposed by Ray and Chakraborty [14].

In this proposed algorithm, they implement a queue of historical frames. Using this queue,

we can observe a single pixel over multiple frames, allowing us to better build a background
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representation than a single frame can. An object moving through a pixel can then be filtered out,

unlike a single frame. We can also track the number of times a pixel changes in the previous

h frames; if the pixel has changed in all h historical frames, represent pseudo-motion from

non-foreground motion as discussed in Chapter 1, such as shimmering water or blowing grass.

The number of historical frames used, h is a parameter to the algorithm.

The details of this algorithm can be seen in Algorithm 4, where Pt is a preprocessed

frame, H is a list of previous historical frames, and At is the moving foreground–the objects we

wish to track, as opposed to Ut , which is the representation of the mostly static background.

The final result of this algorithm stage is a motion mask where 0 represents no motion,

and 1 represents pixels that moved, the moving foreground. This converts the input frame from

Zm to a boolean mask in Bm.

2.4.1 Register Historical Frames

Algorithm 4.1. Register Historical Frames
Input: Hi,Pi
Output: H ′i ,Mi

Ti← calculate transformation matrix(Hi,Pi) ▷ See Algorithm 4.1.1
H ′i ,Mi← transform frame(Hi,Ti) ▷ See Algorithm 4.1.2

Given that we are comparing many historical frames against the current frame, the

camera’s motion can become a significant source of error.

A possible solution to this is to attempt to transform each of the historical frames, Hi to

be in the same coordinate space as the current grayscale frame, Pt which results in the warped

frame H ′i which is in the same coordinate space as Pt .

2.4.1.1 Calculate Transformation Matrix

We can do this by looking at common features between the current frame and any given

historical frame and then compute the necessary transformation matrix. We find the features

using a FAST [17] feature detector to get the list of features. These features are pretty well
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(a) Features labeled between two frames

(b) Features matched between two frames

Figure 2.2. (a) demonstrates locating the features using the FAST feature detector and SSC. (b)
demonstrates the features being matched using the ORB feature matcher.

Algorithm 4.1.1. Calculate Transformation Matrix
Input: Hi,Pi
Output: Ti

kHi ← FAST.detect keypoints(Hi) [17]
kPi ← FAST.detect keypoints(Pi) [17]

kHi ← ssc(kHi) [3]
kPi ← ssc(kPi) [3]

dHi ← ORB.generate descriptions(Hi, kHi) [18]
dPi ← ORB.generate descriptions(Pi, kPi) [18]

N← match(dHi,dPi) ▷ Match features from Hi and Pi
Sort by distance ni ∈ N

Ti← find homography(kHi , kPi)
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distributed over the entire frame, but there are many more features than necessary. As such, we

filter the points using Suppression via Square Covering (SSC) [3] to ensure that the points are

well distributed throughout the frame. The process of matching features can be visualized in

Figure 2.2a.

We now need to match the features between Hi and Pt . The first step is to create feature

descriptions with ORB [18]. We then match the features, choosing the n best-matched features.

The matched features can be seen in Figure 2.2b.

Given these features, we can use them to fit a transformation matrix that transforms the

location of the features of Hi to Pt . In our implementation, we do this matching via Random

Sample Consensus (RANSAC) to find the homography. RANSAC does this by randomly

choosing two samples, then calculating a transformation matrix between those samples. It then

checks to see how many other samples match this generated matrix. This process is repeated

several times, choosing the matrix that fits the most samples.

2.4.1.2 Transform Frame

Algorithm 4.1.2. Transform Frame
Input: Hi,Ti
Output: H ′i ,Mi

M← ones like(Hi) ▷ Matrix of ones same size as Hi

H ′i ← warp perspective(Hi,Ti)
Mi← warp perspective(M,Ti)

With this transformation matrix, we leverage Algorithm 4.1.2 to warp Hi generating H ′i

which is now in the same coordinate plane as the current frame, Pi. For use later in Algorithm 4.8,

we also generate a mask that can be used to mask away the portion of the image lost due to this

transformation.
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Algorithm 4.2. Quantize Frame
Input: H ′i ,Q
Output: Q

s← quantization factor from config()

qi←
H ′i×s
28−1

Q← Q∪{qi}

2.4.2 Quantize Frame

To filter out changes in background lighting and other sensor errors, we introduce a

way to control the algorithm’s sensitivity. We do this by providing a threshold for change.

When considering large amounts of data, this can be performance intensive. A more performant

thresholding method is quantizing the frame and the historical frames and then comparing the

quantized frames as seen in Algorithm 4.2. This is also performed by Ray and Chakraborty [14].

Quantization here compresses the image, so all pixel values are between 1 and s.

This effectively thresholds what pixels are considered to be the same. Originally, Ray and

Chakraborty [14] had compressed the values between 1 and 10. Our change here allows for

increased sensitivity to contrast changes. Larger values of s result in lower threshold values and,

therefore, are less sensitive to changes in color, allowing us to handle lower contrast tasks than

the algorithm initially designed for. The parameter s needs to be supplied to the configuration.

It expects a history frame, Hi, and the existing set of quantized frames, Q. It outputs a set of

quantized frames, including the Q passed in. It required a quantization factor, s to come from the

configuration.

2.4.3 Generate Weights

To reduce the impact of shimmering water or blowing grass, we must differentiate

between pseudo-motion caused by the background and true motion caused by a moving object.

Considering how often a particular pixel changes, we observe that pixels that change consistently

likely do not represent a moving object. Instead, they represent something shimmering as an
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Algorithm 4.3. Generate Weights
Input: Pt ,Q
Output: Wt

Wt ← zeros like(Pt) ▷ A zero matrix the same size as Pt

for Qi ∈ Q for i > 0 do
Wi← (|Qi−Qi−1| ≤ 1)
Wt ←Wt +Wi

end for

object that is moving should induce change that moves through pixels, not stays at the same

pixels [14].

Algorithm 4.3 is adapted from Ray and Chakraborty [14], which generates a weight

value per pixel. The weights represent the number of times per-pixel motion was detected in the

historical frames used to generate Q.

The weight matrix is used in combination with Algorithm 4.4 and Algorithm 4.6 to

calculate the moving foreground in Algorithm 4.7.

2.4.4 Generate History of Dissimilarity

Algorithm 4.4. Generate History of Dissimilarity
Input: Pt ,H ′

Output: Dt

Dt ← zeros like(Pt) ▷ Matrix of zeros the same size as Pt

for H ′i ∈ H for i > 1 do
Mi← |Qi−Qi−1| ≤ 1
Di← |H ′i −H ′i−1|
Di[Mi]← 0
Dt ← Dt +Di

end for

Dt ← Dt/n ▷ n is the number of frames in H ′ + 1

Algorithm 4.4 measures a pixel’s change within the historical frames, |H ′i −H ′i−1| ∀

H ′i ∈ H. This is the average change of a pixel throughout the historical frames. This will later be
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used in Algorithm 4.7 to compare against the moving foreground; foreground values with more

change than the average change are likely to be true movement and not pseudo-movement.

2.4.5 Generation of Static Background

Between Algorithm 4.5.1 and Algorithm 4.5.2, the goal is to create an estimate of the

static, non-moving background.

2.4.5.1 Intersect Frames

Algorithm 4.5.1. Intersect Frames
Input: Q,H ′

Output: It
It ← /0
g← /0

for i, j = i+1|i∀i <= n do
g← g∪{(i, j)}

end for

for i, j ∈ g do
Mi j← |Qi−Q j| ≤ 1
Ii j← H ′i [Mi j]
It ← It ∪ Ii j

end for

The goal of the first step is to remove pixels that are likely to have changed between the

frames due to true motion caused by a moving object or pseudo-motion caused by environmental

factors. Each pair of two frames are intersected by comparing each pixel. If the pixels are the

same, the value is copied over to the result; if the value is different, then the intensity in the result

is 0 [14]. This yields h−1 intersected frames for h historical frames, where h is the number of

historical frames defined as a parameter to the algorithm discussed earlier. Each of these h−1

intersected frames represents the static portions of the background between two consecutive

historical frames.
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2.4.5.2 Union Intersected Frames

Algorithm 4.5.2. Union Intersected Frames
Input: It
Output: Ut

Ut ← zeros like(I0)

for Ii ∈ It do
Ut [Ut = 0]← Ii[Ut = 0]

end for

Once we intersect each pair of h frames, the h−1 intersected frames are combined by a

union operation [14]. The goal of the union operation is to fill the gaps created by the intersection

operation with the actual background. Starting with an empty matrix Ut with all intensities 0,

we can begin by looping over each Ii ∈ It . Since the intersections have gaps, the union of these

frames should fill them. We should be able to estimate the entire background better for each

iteration. Since the background remains static, each Ii should have the same intensity for portions

of the background observed within a margin of error as defined by the quantization step. After

all, iterations are complete, we have an estimate of the static background. The output is the

union, Ut . See Algorithm 4.5.2.

2.4.6 Subtract Background

Algorithm 4.6. Subtract Background
Input: Pi,U,W
Output: Ai

P′t ← zero weights(Pt ,Wt) ▷ See Algorithm 4.6.1
U ′t ← zero weights(Ut ,Wt)

At ← |P′t −U ′t |

This algorithm extracts the foreground from the current frame. It uses the estimated static

background, Ut , from Algorithm 4.5.2 and the weights, Wt , representing the number of times a

pixel changes in the previous historical frames as generated in Algorithm 4.3. It first zeros out
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all portions of the frame that have moved in every historical frame to address pseudo-motion

from the environment. It then subtracts the estimated background from the current frame leaving

only the foreground pixels. This algorithm is adopted from Ray and Chakraborty [14]. See

Algorithm 4.6.

2.4.6.1 Zero Weights

Algorithm 4.6.1. Zero Weights
Input: Zt ,Wt
Output: Z′t

h← history from configuration()
Z′t ← Zt
Z′[Wt ≥ h−1] = 0

Algorithm 4.6.1 portion of the method is directly adapted from [14]. It requires h, the

number of historical frames pulled from the configuration.

2.4.7 Compute Moving Foreground

Our goal now is to generate a candidate moving foreground mask. We will leverage the

weights matrix, W , representing the number of times a pixel has changed in the previous historical

frames. We will also leverage the history of dissimilarity, Dt , the average amount of change per

pixel frame to frame. The last portion will be the foreground, At . We produce our candidate

moving foreground mask by combining these three as defined by Ray and Chakraborty [14], as

seen in Algorithm 4.7. Figure 2.3 visually represents this combination step.

To combine these three matrices, we first categorize how often a pixel changes based

on W . We do not consider pixels that change many times within the historical frames. This

is because these represent environmental pseudo-motion. We next categorize how different

the foreground is compared to the background. We will only consider foreground values that

represent more change than average. This is done to reduce misclassification.
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Algorithm 4.7. Compute Moving Foreground
Input: Dt ,At ,Wt
Output: A′t

h← history from configuration()
x← 255

3

Wt,low←Wt ≤ ⌊h−1
3 ⌋

Wt,medium← ⌊h−1
3 ⌋<Wt ∧Wt < h−1

Wt,levels←Wt,low +2Wt,medium

At,low← At ≤ ⌊x⌋
At,medium← ⌊x⌋< At ∨At < ⌊2x⌋
At,high← At ≥ ⌊2x⌋
At,levels← At,low +2At,medium +3At,high

Dt,low← Dt ≤ ⌊x⌋
Dt,medium← ⌊x⌋< Dt ∨Dt < ⌊2x⌋
Dt,high← Dt ≥ ⌊2x⌋
Dt,levels← Dt,low +2Dt,medium +3Dt,high

A′t ←Wt,levels = 2∧At,levels ≥ Dt,levels
A′t ← A′t ∨ (Wt,levels = 1∧At,levels > Dt,levels)
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Figure 2.3. The unfiltered moving object mask is the combination of the results from Algo-
rithm 4.3, Algorithm 4.4, and Algorithm 4.6

2.4.8 Apply Masks

Algorithm 4.8. Apply Masks
Input: At ,M
Output: A′t

A′t ← At
for Mi ∈M do

A′t ← A′t×Mi
end for

We have generated a noisy mask of the moving foreground at this point. This mask has

inappropriately marked regions with no data in more than one historical frame as part of the

moving foreground. This needs to be corrected.

We can assume that the outer edges do not contain relevant information as the camera

moves. Using this assumption, we compute the “dead” regions caused by camera motion, i.e. the

areas that are cropped out after correcting the camera motion. These motions are then masked
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away in Algorithm 4.8 using masks generated in Algorithm 4.1. This addition for correcting the

camera motion is another contribution proposed in this write-up.

2.4.9 Noise Reduction/Connecting the Blobs

Algorithm 4.9. Noise Reduction
Input: At
Output: A′t

ε ← ε from config()
m← min samples from config()
ko← dbscan kernel from config()

A′t ← dbscan(At ,ε,s) [7]
A′t ← A′t⊕ ko ▷ ⊕ refers to the dilate operation
A′t ← A′t⊖ ko ▷ ⊖ refers to the erode operation

To reduce the noise seen in Figure 2.4, we first run DBScan [7] against the results of

Algorithm 4.8. This noise differs from the noise discussed in Section 2.4.7. The noise Section 4.7

is primarily focused on is caused by pseudo-motion. Conversely, the noise we focus on here

is caused by subtle differences introduced by Section 2.4.1. We can filter out this noise by

observing that the pixels of our objects will move as a dense group. DBScan allows Spot to

determine which motion-candidate pixels are part of a dense group; the denser the group, the

higher the probability that each pixel is true motion.

This process removes most of the paint-splatter noise seen in Figure 2.4a, but may leave

these groups potentially unconnected. We have observed this to be the case because a single

object, particularly a soft-bodied one, may only have a few pixels connecting two dense groups

depending on how it moves. To correct this, we perform a dilation operation with kernel ko.

This connects the groups by expanding each motion pixel until they overlap. Assuming that

the objects to be tracked are sufficiently separated, this does not impact accuracy. When this

assumption does not hold, it may result in connecting more than one distinct object.

Finally, the now connected regions are larger than the motion regions discovered in

Algorithm 4.7. To correct this, it is necessary to perform the opposite operation, erode. Using
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(a) Moving Foreground (b) Reduced Noise

Figure 2.4. As seen in (a), the moving foreground results have paint-splatter-like noise. (b)
applies the DBScan [7] to remove the paint-splatter like noise.

the same kernel, ko, we reduce the connected regions to the original size. The final result can be

seen in Figure 2.4b.

At the end of this stage, we have completed the motion detection task by computing the

moving foreground mask. In the next section, we will convert this mask to a list of regions of

interest.

2.5 Region Detection

Algorithm 5. Region Detection
Input: A′t
Output: Rt

Ct ← find contours(A′t)[19]
Rt ← bounding rect(Ct) ▷ calculates up-right bounding rectangle

At the end of Section 2.4, we now have a mask representing the moving foreground. To

convert this mask into regions of interest, we must now detect each of the blobs within this mask.
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(a) Region Detection on Reduced Noise Frame (b) Regions on Original Color Frame

Figure 2.5. Region detection is performed on the reduced noise moving foreground from
Algorithm 2.4 (a). These regions can then be used on the original frame to bound the moving
objects (b).

To do this Algorithm 5 first finds the contours of the connected regions leveraging an algorithm

defined by Suzuki and Abe [19].

To define a bounding box, this can then detect the top-left and bottom-right contour

points. These bounding regions represent the objects moving within this frame compared to the

previous one. Figure 2.5 visualizes these regions of interest by drawing bounding boxes around

them.

2.6 Particle Filter

The previous step produced a list of regions that changed between the current and previous

frames. To answer the moving-object tracking problem, it is necessary to match moving regions

from one frame to the next; otherwise, there is no relationship between a region in one frame and

the same region in another. To do this, we propose using some Bayesian Filter; in this case, we

opted for a particle filter to track each region. This would mean assigning each region to track its
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Algorithm 6. Particle Filter
Input: Rt ,Tt ,Φ
Output: Rt ,Φ

Γt ← /0

for Φi ∈Φ do
Φi← particle filter predict(Φi) ▷ See Algorithm 6.1
Φi← particle filter transform(Φi,Tt) ▷ See Algorithm 6.2
Φi← particle filter update(Φi) ▷ See Algorithm 6.3
Φi← particle filter resample(Φi) ▷ See Algorithm 6.4

for rt,i, j ∈ Rt do
γt,i, j← particle filter calculate probability(Φi,rt,i, j)
Γt ← Γt ∪{γt,i, j}

end for
end for

Γt ← reverse sort(Γt) ▷ Sort the probabilities

R′t,used← /0
for γt,i ∈ Γt do

if γt,i > 0 then
R′t,used← R′t,used∪{rt,i} ▷ Get the list of used regions

end if
end for
R′t,unused← Rt−Rt,used

Φ←Φ∪{Φt,i,unused|rt,unused,i ∈ R′t,unused} ▷ Create a new particle filter for each unused
region
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own particle filter. A particle filter can accomplish the task of tracking a region frame-to-frame

by creating many ”particles” representing the object’s current state–the location and size of the

bounding region. Each of these particles is assigned a likelihood. Between observations, we can

perturb these particles to produce a probability map of where any object is likely to be. We can

then leverage this probability map to decide which observation this frame will likely be the same

region.

After all particle filters have been associated with a region, a new filter is created for each

newly detected region, the specifics of this can be seen in Algorithm 6.

2.6.1 Predict

The first portion of the particle filter we will discuss is the prediction step. This step is

common to all Bayesian filters and allows it to compensate for changes in the observed state

based on probabilistic expectations of how those changes occur.

Since Spot is generic, it is impossible to know in what direction a particular object will

likely move to the next frame. For particular objects, such as vehicles, assumptions may be made

based on historical velocity, but other objects, such as those observed in wildlife tracking, may

change direction erratically.

Instead of assuming a particular kind of movement, in Algorithm 6.1, we assume the

object will be near its previous location. For each particle, we also assume that the amount it

can move is a function of the space it takes up in the frame, which we measure by taking the

diagonal of the bounding region. This decision is made to bound the amount of movement we

expect. In this case, we assume that a long train may move faster than a smaller animal. We

then sample from a normal distribution to decide how much to move the particle. This helps

account for some of the randomnesses of the objects being tracked since it does not assume how

the object will move, just the amount of motion.

Next, we decide the direction in which the object will travel. This is done assuming any

possible direction is equally as likely. As stated before, better assumptions may be made based
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Algorithm 6.1. Particle Filter Predict
Input: Φi
Output: Φi

for φi, j ∈Φi do
xi, j,top left,yi, j,top left← φi, j,top left
xi, j,bottom right,yi, j,bottom right← φi, j,bottom right

wi, j← xi, j,bottom right− xi, j,top left
hi, j← yi, j,bottom right− yi, j,top left

di, j←
√

w2
i, j +h2

i, j

d′i, j←N (0,0.01)×di, j ▷ Sample from a normal distribution with µ = 0,σ = 0.01
ri, j←U (0,1)×2π ▷ Sample from a uniform distribution over the range [0,1]

∆i, j,x← round(d′i, jsin(ri, j))

∆i, j,y← round(d′i, jcos(ri, j))

∆i, j,top left,x← round(U (0,1)−0.5)
∆i, j,top left,y← round(U (0,1)−0.5)
∆i, j,bottom right,x← round(U (0,1)−0.5)
∆i, j,bottom right,y← round(U (0,1)−0.5)

if ∆i, j,top left,x ≥ ∆i, j,bottom right,x then
∆i, j,bottom right,x← ∆i, j,top left,x ▷ Correct the case where the left point passes the right

end if

if ∆i, j,top left,y ≥ ∆i, j,bottom right,y then
∆i, j,bottom right,y← ∆i, j,top left,y ▷ Correct the case where the top point passes the bottom

end if

φi, j,top left,x← xi, j,top left +∆i, j,x +∆i, j,top left,x
φi, j,y,top left← yi, j,top left +∆i, j,y +∆i j,top left,y
φi, j,bottom right,x← xi, j,bottom right +∆i, j,x +∆i, j,bottom right,x
φi, j,bottom right,y← yi, j,bottom right +∆i, j,y +∆i, j,bottom right,y

φi, j,observed← False
end for
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on apriori knowledge of what is being tracked, but we do not make those assumptions for Spot.

Finally, we decide how we will transform the shape of the bounding region. This is done

to account for the possibility that an object may change shape from frame to frame. Again, since

we cannot make assumptions on how this may happen, we assume any shift in change is possible.

2.6.2 Transform

Algorithm 6.2. Particle Filter Transform
Input: Φi,Tt
Output: Φi

for φi, j ∈Φi do
xi, j,top left,yi, j,top left← φi, j,top left
xi, j,bottom right,yi, j,bottom right← φi, j,bottom right

pi, j,top left←

xi, j,top left
yi, j,top left

1


pi, j,bottom right←

xi, j,bottom right
yi, j,bottom right

1


p′i, j,top left← round(Tt ptop left)

p′i, j,bottom right← round(Tt pbottom right)

φi, j,top left,x← pi, j,top left,x
φi, j,top left,y← pi, j,top left,y
φi, j,bottom right,x← pi, j,bottom right,x
φi, j,bottom right,y← pi, j,bottom right,y

end for

Since the camera may move from frame to frame, we must transform particles in the

previous frame’s coordinate space into the current frame’s coordinate space. We do this by

applying the transformation matrix from Pt−1 to Pt calculated by Algorithm 4.1.1 to each of the

particle filters and, therefore, each particle within a filter. We then transform the location of the

top-left and bottom-right of the bounding box represented by each pixel, resulting in the particles

being in the coordinate space from of Pt instead of Pt−1 by the end of Algorithm 6.2.
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2.6.3 Update

Algorithm 6.3. Particle Filter Update
Input: Φi
Output: Φi

for φi, j ∈Φi do
W ← /0

for Ri,t ∈ Rt do
wi, j,t ← iou(φi, j,region,Ri,t) ▷ Calculates intersection over union between two regions
W ←W ∪{wi, j,t}

end for

wi, j← max(W )

if w = 0 then
continue ▷ This particle does not intersect with a known region

end if

φi, j,weight← φi, j,weightwi, j
end for

This subsection once again details a portion of the classical Bayesian filter. It is re-

sponsible for considering an observation and updating the particles as a result. In our case, the

observation is a single region of interest determined by Section 2.5.

To determine which region of interest corresponds to this particle filter, the Algorithm 6

leverages a weighted average of all of the particles within the filter. The region of interest most

likely to relate to this particle filter is the one used as the observation.

Algorithm 6.3, then iterations over each particle and calculates the intersection over

union (IOU) of the particle region with each region found in Pi. The largest IOU is then used as

the new weight if it is a nonzero value. If the value is 0, we assume the object has been lost and

do not move the particle since we have no observations for this particle.

29



Algorithm 6.4. Particle Filter Resample
Input: Φi
Output: Φ′i

p← number of particles from config()
Φ′i← /0

Wi←{wi,region = 0|φi, j,region∀Φi} ▷ For all unique regions in Φi

for φi, j ∈Φi do
wi,region← wi,region +φi, j,region

end for

for wregion ∈Wi do
pi,region← round(p wi,region

∑region wi,region
)

if count(Φ′i)+ pi,region > p then
pi,region← p− count(Φ′i)

end if

if pi,region = 0 then
break

end if

Φ′i←Φ′i∪{φi, j| j∀[0, pi,region)}
end for
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2.6.4 Resample

After an update, some particles have a much larger weight than others since the update

step boosts the weight of particles representing the observation. Others still no longer represent

objects worth tracking as they did not align with observations. To address this, Algorithm 6.4

relocates all particles.

It does this by calculating the total weight of the particles assigned to a particular region.

Afterward, the particles within a particular particle filter are redistributed to better represent

the high-weighted regions of interest, resetting the particle filter to a state ready to repeat the

prediction and update steps. The total weight is then used to calculate the number of particles

that should represent this region in the new set.

2.6.5 Calculate Probability of Region Match

Algorithm 6.5. Particle Filter Calculate Probability
Input: Φi,rt,i, j
Output: γt,i, j

p← number of particles from config()

γt,i, j← ∑φi, j∈Φi
1
p iou(φi, j,region,rt,i, j)

To decide which particle filter likely represents which region, rt,i, j, a weighted sum of all

of the IOUs is calculated as performed by Algorithm 6.5. A weighted sum allows the algorithm

to combine the results of many particles and account for the fact that each particle may point to a

unique region in the worst case.

This probability allows us to relate the particle filters and regions of interest over time.

With this construction of the particle filter, we have a means of tracking objects provided by the

region detection and motion tracking algorithms.
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Table 2.1. The parameters of the algorithm

Parameter Name Parameter Description

kp The kernel used in Algorithm 3 to blur the gray-scale input frame
h The number of historical frames to keep in the queue as used by Algo-

rithm 2, Algorithm 2, Algorithm 4.6.1, and Algorithm 4.7
s The quantization factor used by Algorithm 4.2 to quantize each pixel of

the frame
ε The threshold distance for DBScan [7] as used in Algorithm 4.9
m The minimum number of samples DBScan needs to consider a point a

core point as used in Algorithm 4.9
ko The kernel used for dilating and eroding to reconnect the blobs after

performing DBScan as used in Algorithm 4.9

2.7 Algorithm Parameters

With the explanation of the algorithm complete, Table 2.1 now contains a list of all the

parameters used by the algorithm and a short description.
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Chapter 3

Parameter Selection and Metrics

In the previous chapter, we described Spot, a low-contrast, low-resolution moving object

tracking algorithm. This chapter will describe how we select the configuration parameters and

metrics to evaluate the algorithm and configuration parameters.

3.1 Parameter Optimization

When performing parameter optimization, there are often multiple metrics that we wish

to optimize. Consider an abstract optimization problem where we may wish to optimize two

variables, x and y. We can formulate this as a design space exploration problem. In such

a problem, the inputs are referred to as knobs. These knobs are inputs to an algorithm or

configurations of a design that we, as designers, can modify. Each knob has a range of values

it is valid for. Figure 3.1 can be used to visualize such a design exploration problem for the

two-dimensional case. Higher dimensional cases can be harder to visualize.

Here, the blue triangles represent samples of particular settings of the knobs. Each sample

is then measured in the x and y variables, known as the output variables. When reviewing these

metrics, we can see that each of these samples has trade-offs with one another. That said, some

samples are more optimal than others. We have highlighted these more optimal points in red.

They are referred to as Pareto optimal points.

Each Pareto optimal represents a point where variable x cannot be improved without
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Figure 3.1. Example of a Pareto front on synthetic data.

negatively impacting variable y or vice versa. These red Pareto optimal points are referred to as

the Pareto front for this design. Since each value not on the Pareto front is objectively worse

than those on the Pareto front, the only values we are genuinely interested in are those on the

Pareto front. The Pareto front represents a set of optimal points, meaning that no value within

that set is more optimal than another value in that set. We can only choose a point from this set

when we have a specific application with specific requirements.

In the case of Spot, we will aim to find the Pareto front for Spot parameter sets for related

videos. This search for parameter sets will not be transferable between unrelated videos since,

for example, wildlife and vehicles are very different categories of objects to be tracked.

To find the Pareto front for Spot, we need to define the design space for a video evaluated

by Spot. We will define the input space as the configuration parameters in Table 2.1. The output

space will be the accuracy of Spot in solving the moving object detection problem. Next, we will

define the metrics to evaluate Spot’s performance.
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3.2 Base Metrics

To continue our construction of Spot’s Pareto front, we must first define the metrics we

intend to optimize. We will use standard metrics for moving object detection. We must have

videos that already know where the moving objects are to leverage these standard metrics. This

list of moving objects and their locations per frame will make up our ground truth.

To produce the metrics, we will begin with three base metrics. (1) True positive (TP)

when an object detected is where we expect it to be. (2) False positive (FP) when we detect a

moving object, but there is not one. (3) False negative (FN) when there is a moving object, but

we fail to detect it. More specifically, to evaluate these, we will consider a true positive when

the bounding box provided by the ground truth overlaps the bounding box detected. A false

positive is when the bounding box detected does not overlap with any region the ground truth

provides. And finally, a false negative is when the bounding boxes provided by the ground truth

do not overlap with any detected region. These definitions were chosen to match Yin et al. [22]

as interpreted by this author.

3.3 Derived Metrics

To evaluate the performance of Spot, the base metrics defined in Section 3.2 are combined

to provide performance metrics. These metrics are defined below and correspond to metrics

commonly used in this field of research.

3.3.1 Precision

Precision is a measure of the relationship between true positives to false positives.

Precision =
TP

TP+FP
(3.1)

This value goes to 1 if all regions detected by an algorithm are true positives. This means

that everything detected is accurate but does not imply that all objects were detected. This metric
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(a) Optimized Precision (b) Optimized Recall

Figure 3.2. Examples of optimized precision and optimized recall. Demonstrates that highly
inaccurate algorithms can have either high precision or high recall.

can be manipulated by detecting a few regions and ensuring you have a few false regions.

3.3.2 Recall

Recall is a measure of the relationship between true positives and false negatives.

Recall =
TP

TP+FN
(3.2)

This value goes to 1 if an algorithm detects all true regions. This means that all moving

objects were detected but does not imply that objects not moving were not detected. This metric

can be manipulated by detecting many regions, ensuring you hit as many regions as possible.

3.3.3 Precision vs. Recall

Precision and Recall are often trade-offs. For example, high precision, as in Figure 3.2a,

can be achieved by accurately tracking only a few objects as long as it produces no false positives.

An algorithm that maximizes this at the cost of recall will often miss many moving objects.
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While, high recall, as in Figure 3.2b, can be achieved by ensuring that false negatives are

avoided, even if the algorithm finds objects that are not moving. An algorithm that maximizes

this at the cost of precision will find many moving objects that do not exist.

Thus, to truly evaluate Spot’s performance, we must examine the two scores’ trade-offs.

3.3.4 Precision-Recall (PR) Curve

A precision-recall curve measures the trade-off an algorithm has between precision and

recall. Algorithms with a higher area under the curve (AUC), are considered better algorithms

for a particular dataset. We refer to the AUC as the Average Precision-Recall (AP). These values

can be visualized in Figure 3.3.
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Figure 3.3. The red line represents a Precision-Recall curve while the shaded area represents the
area under that curve, the Average Precision-Recall

3.3.5 F1-Score

Another method of approaching the trade-off is to consider what a balance of the two

scores looks like. To capture the balance between precision and recall, we will also examine

the harmonic mean of the metrics. This is known as the F1-score. It measures how accurate

a particular algorithm is at finding only true positives. We can see this balance in Figure 3.4.
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As the F1-score goes to 1, the algorithm has correctly found all the true positives and no false

negatives or positives, meaning no objects were missed and nothing was incorrectly identified as

a moving object.

Figure 3.4. Example of optimized F1. By requiring the algorithm to optimize for both recall and
precision, a balance that provides higher accuracy can be found.

F1 =
2×Recall×Precision

Recall+Precision
(3.3)

3.3.6 Mean Average-Precision (mAP)

To evaluate the performance of an algorithm across an entire dataset, we need a way of

combining scores from individual videos within a dataset into a single score. As the AP score

represents a measurement of an algorithm’s effectiveness on a particular video, we will take the

mean of all of the AP scores, referred to as the Mean Average Precision-Recall (mAP). Higher

values for this metric mean that a particular algorithm is a better overall algorithm within the set

of videos similar to those tested against.
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Table 3.1. The parameters as defined in Table 2.1 and their respective value ranges.

Parameter Name Minimum Value Maximum Value Step

kp 3 7 1
h 3 8 1
s 5 9 2
ε 0.5 4.5 1
m 5 19 2
ko 3 9 2 (must be odd)

3.4 Design Space Exploration

Before we can begin our discussion of exploring the Spot design space, we must first

define the input and output spaces. This way, we can sample the input space and determine how

it maps to the output space.

3.4.1 Considering the Design Space

To be exhaustive in our search, we would have to check every valid combination of

parameters from the above algorithm, as seen in Table 2.1. Since we are sampling unique

algorithm parameter combinations, considering them as continuous values do not make sense.

Instead, we will approximate the continuous space by discretizing the possible values as seen in

Table 3.1.

The total number of parameter sets described in Table 3.1 is 19,200 total parameter

configurations and six input parameters.

We will focus on the recall and precision scores defined in Section 3.3 to evaluate Spot.

Therefore, the Pareto front will compare precision and recall. For each parameter set, there will

be one pair of values generated to evaluate algorithm performance.

Now that we have determined the metrics we wish to evaluate and how many possible

evaluations there are, we need to discover which of those evaluations are on the Pareto front.

One possible way is to explore the space exhaustively, calculating each value for the 19,200 com-
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binations. Such an exploration is impractical since executing each input parameter combination

may take more than ninety minutes. It requires fully running Spot on the input video, resulting

in over three years of computing time per video. The following section will consider a better

approach to the design space exploration problem.

3.4.2 Sherlock

Another approach to the design space exploration problem is to consider the problem

to be a function f such that f : Rm −→ Ro where m represents the number of input knobs and

o represents the number of metrics we are optimizing for. In this case, the input knobs are the

parameters defined in Table 3.1. Therefore m = 6. The output space is the two metrics defined

above, recall and precision, making o = 2. Considering Spot as a function f makes it possible to

estimate the function using various existing design space exploration tools. One of those tools is

Sherlock [8].

Sherlock [8] is a design space exploration algorithm with the goal of reducing the number

of samples needed to approximate the Pareto front. Therefore, to use this algorithm, we must

put our parameter search problem within the formulation of a design space exploration problem

stated before. With the knowledge of the input and output spaces, Sherlock aims to approximate

the function f and exploit its knowledge. It does so by alternating between exploration and

exploitation. The exploration step allows Sherlock to improve its estimation of f . In contrast,

the exploitation allows Sherlock to leverage the previously generated function to find the Pareto

front and, therefore, focus its sampling around the Pareto front. Thus, it can calculate the ideal

parameters to use on data for which the test video is representative.

We refer to each calculation of input space to output space mapping as a sample. Each of

the samples requires fully executing Spot on a reference video. Since Sherlock aims at estimating

f , Sherlock can focus its sampling either around unexplored areas or where it expects to find

the Pareto front. This allows it to greatly reduce the number of samples needed to estimate the

Pareto front.
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The next question that needs to be answered is when to stop sampling values. Gautier

et al. [8] demonstrated that in field programmable gate array (FPGA) applications, Sherlock

converged in less than 30% of the space sampled. That would still be nearly 14 years of

computing time for Spot, again impractical. Therefore, we examine the resultant Pareto front

estimation after Sherlock discovers each new value. We assume convergence when the frequency

of discoveries that improve the Pareto front is greatly reduced.

3.4.2.1 Objective Functions

The definition of the metrics has a major impact on the function mapping, f . The

implementation of these metrics we will refer to as objective functions. The first two we will

discuss will be labeled as problem objective functions as they contain false assumptions that

must be corrected. As true positives, false positives, and false negatives form the basis for all

other metrics, this section will focus on refining our definition of true positive, false positive, and

false negative to address the aforementioned assumptions.

These faulty assumptions are brought to light here as part of an artifact of how Sherlock

functions. As Sherlock does not know the problem it is trying to solve, it will blindly optimize

its provided metrics, even if those metrics are faulty.

3.4.2.1.1 Problem Objective Function 1

The first objective function best matches the definitions defined in Yin et al. [22] and

Section 3.2. Any overlap between a ground truth region and a detected region is a true positive.

Intersection over Union (IOU)–a score that measures the overlap of two regions–is not considered

part of the decision. That is to say, there is no minimum amount of overlap considered. There is

no maximum size for a region detected; therefore, a detected region may bound the entirety of

the frame. Such a large detected region may overlap more than one region in the ground truth,

thus, allowing one detected region to result in multiple true positives.

When experimenting with this, it became clear that Sherlock would prioritize larger

regions since they would artificially inflate the true positive score, improving precision and recall.
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Table 3.2. Comparison of multiple different objective functions. A “-” means no explicit decision
was made.

Objective Function Max Width Max Height Allow Overlap Recall Precision F1 AP

Problem Objective Function 1 - - - 1.0 0.86 0.92 0.86
Problem Objective Function 2 35/55 35/55 - 0.99 0.82 0.90 0.82

Final Objective Function 35/55 35/55 no 0.5 0.63 0.56 0.53

This can be seen in the Pareto front in Figure 3.5 where the graph corresponding to Problem

Objective function 1 is focused at the right-most edge with a recall of near 1.
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Figure 3.5. Pareto front of all three objective functions against a representative video.

3.4.2.1.2 Problem Objective Function 2

The second objective function corrects for the large regions seen with problem objective

function 1. In one of the datasets we will consider later, the largest objects are below 35×35

pixels. On the other hand, the other dataset we will review has objects that are no larger than

55×55 pixels. Therefore, we have chosen to bound the regions to these sizes. Regions above

this size are considered false positives. As seen in Table 3.2, this had the results of reducing the

AP score. Also, in Figure 3.5, we can see that the Pareto front for Problem Objective function 2

no longer has large numbers of extremely high-valued recall. That said, values still skew towards

a recall of 1.

Upon investigation, this was caused by an objective function that allowed multiple

overlapping detection regions to be considered true positives. Before evaluating a frame, Spot

does not know how many objects are expected to be within that frame. It may select multiple
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regions for a single real object. Thus, if two of these detected regions overlap a single ground

truth region, each is considered a true positive, potentially inflating our metrics and skewing

Sherlock’s search. This means that regardless of the number of errors, if an algorithm favored

many, small area regions that overlap with ground truth, precision and recall could still tend

toward 1.

3.4.2.1.3 Final Objective Function

To correct the issues presented in problem objective function 2, we introduced a rule that

only allowed a single region with the largest IOU to be considered a true positive. All other

regions are considered false positives. As seen in Table 3.2, this resulted in precision and recall

avoiding the artifacts generated by Sherlock seen in the previous two objective functions. This is

ideal because these artifacts do not represent true improvements in Spot’s performance on the

sample videos. This is the objective function used to evaluate the results presented in Chapter 5.
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Chapter 4

Experiment Design

As stated previously, Spot is a generic moving object tracking algorithm. As such, we

will evaluate it against two representative problems–tracking vehicles from satellites and tracking

baboons from drone footage. Below we will discuss both problems and the data we aim to use to

evaluate Spot as a solution to these problems.

4.1 Traffic Congestion Monitoring

As the resolution of satellites improves, they are being used more often for surveil-

lance than before, particularly traffic density [12] and traffic flow [21] to aid in city planning.

Information collected from satellites can be used to determine areas of high traffic or congestion.

These methods can be beneficial since they do not require sensors to be individually

placed within locations that aim to be monitored. Alternatives may include road sensors and

CCTV [12]. As these systems can be expensive, there have also been experiments to cover larger

areas with aerial photography [21]. Ground-based systems can be expensive when placed over

a large area. Likewise, tasked satellites can cover a much larger area than aerial photography,

quicker and with less manpower, allowing satellites to cover approximately fifty-five square

kilometers [22] within a single image. Since satellites do not require individual sensors or pilots

to fly, evaluating regions with tasked satellite imagery can be cheaper.

Kopsiaftis and Karantzalos [12] use vehicle and traffic detection to estimate traffic density.
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They perform this by dividing the scene into a “low-resolution grid”. Each block then calculates

the number of vehicles, yielding an estimated traffic density.

Yang et al. [21] use satellite footage to generate motion heat maps to estimate trajectory,

allowing traffic flow tracking.

4.1.1 Dataset

The first moving object tracking problem we will examine uses satellite-based cameras

to track moving vehicles, using VIdeo Satellite Objects (VISO) dataset [22]. This dataset aims

to provide a baseline for research in the field.

Seven frames of the footage from the VISO dataset can be seen in Figure 4.1. These

seven videos exhibit different potential complications a moving object detection problem may

have. The videos aim to track moving vehicles within the images, including those in highway

and cityscape conditions. While the satellites use relatively high-resolution RGB cameras, due

to the height above the ground, the videos of an effective resolution of approximately 0.9m per

pixel [22]. Given this low resolution, the typical size of vehicles to be tracked averages 6×7

pixels.

In addition to the low resolution of the target objects, it can be seen that the contrast many

of the target objects have with the background is relatively low, having an average luminance

value of 0.18, further complicating the tracking problem. Here, average luminance is calculated

by (1) taking each ground truth region, (2) doubling its size so that it includes information from

the background, (3) calculating the standard deviation of the pixel intensity within the expanded

region, and (4) averaging the standard deviation across each detected region.

Other features of the videos make them hard for the moving object detection problem.

The motion of the satellite, and thus by extension, the camera, results in the perceived motion

of the objects, even if they are not moving in relation to the background. Other sources of this

motion that does not represent moving objects are those triggered by elements in the scene, such

as water, as can be seen in Figure 4.1a and Figure 4.1d. Throughout this write-up, we will refer
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(a) Video 1 (b) Video 2 (c) Video 3

(d) Video 4 (e) Video 5 (f) Video 6

(g) Video 7

Figure 4.1. Videos represented from Yin et al. [22] in the VISO dataset.

to false motions induced by camera motion and false motion induced by background elements as

pseudo-motion.

Another class of movement that adds additional complexity is that of objects that move

faster than the target objects. As many algorithms depend on relative motion, too much change
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from frame to frame can be perceived as multiple objects moving. For example, an object that

may have too much motion frame to frame is a bird or a plane flying through the frame as it has

faster motion than the objects we intend to track.

4.1.2 Video Selection

For this dataset, we aim to choose the same videos as selected by Yin et al. [22]. Un-

fortunately, it is not made clear what seven videos are chosen. Instead, we make assumptions

based on the clues provided. Figure 8 of their paper provides screenshots for Video 1 and Video

7. Comparing these with the names of the files within the presented dataset, these videos are

car/003 and car/009. For the remainder of this document, we assume videos 2 through 6 are

the five remaining video files between Video 1 and Video 7 in the files provided.

4.2 Baboon Tracking

Collective and distributed decision-making has long been a topic of interest in animal

research since it is a complex process in many nonhuman animal species. Long-lived social

mammals that interact within societies have much in common with humans. Within these

particular societies, individuals and their connections within their social network critically

impact group-level behavior. This is particularly true of nonhuman primates.

To understand group decisions and the context thereof, one would ideally be able to

continuously (1) monitor identified individuals and their activities, (2) track the relational

dynamics and social networks, (3) monitor group-level behavior and (4) monitor the environment.

To find and analyze the moment when a decision is made—for example, what direction

a troop will head—it is necessary to track the entire baboons individually. The decision is a

complex negotiation that can originate from both local dynamics and relational history between

individuals. Since it is difficult to know all the variables involved in a decision, it is necessary to

understand the moment a decision is made.

Currently, to understand the dynamics, researchers in the field take notes about obser-
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vations. Unfortunately, these notes do not provide the full context, as a single researcher can

only see a portion of the sleeping site. GPS radio collars have been used to augment the notes

taken by field researchers. Still, they only allow for observing partial group membership and

thus require attempting to fill in gaps left by having only partial results. Using drones would

allow for the monitoring of individuals and small groups, but also the troop as a whole, in a way

that is not achievable with GPS collars or field observations alone.

Aerial drone footage can help fill in some of these gaps, providing a complete view of

the entire site. As there may be hours worth of drone footage to review, it is impractical to do

it by hand. Instead, computer vision techniques can reduce the amount of video that must be

reviewed.

The primary goal is to be able to use the processed footage to identify the moment of

decision. Drone footage is less invasive than other methods (e.g. radio collars) and allows

researchers to view the entire group. This footage provides additional context that collars cannot,

as a collective decision may originate from an individual’s agenda.

4.2.1 Dataset

Next, we will examine a similar problem from ecology, dubbed the baboon tracking

dataset provided by photographer Neil Thomas.

In this section, we review the baboon tracking dataset. This dataset is several videos

collected by photographer Neil Thomas flying a DJI Mavic 2 Pro over the Laikipia Plateau of

Kenya.

Figure 4.2 shows an example frame from this dataset. In this figure, as with the VISO

dataset, we see that our objects to track are rather small, having an average pixel size of 25×23.

In addition to the low resolution, just as with the VISO dataset, the baboon tracking

dataset has targets that blend well with the environment, as expected, with animals well adapted

to their environment. Targets within the dataset have an average luminance value of 0.13.

The baboon tracking dataset also contains examples of pseudo-motion. Examples can
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Figure 4.2. Example from the baboon tracking dataset.

be seen in the blowing of trees and grass and the motion induced by the movement of the

drone-mounted camera. These motions are similar to what is seen in the VISO dataset, with the

shimmering water and satellite motion being analogs.

4.2.2 Video Selection

For this dataset, we chose a single video representative of the data that Spot was designed

to process due to the difficulty of procuring data within the space.
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Chapter 5

Results

In Chapter 1, we introduced two representative problems in the moving object tracking

space, vehicle monitoring from satellites in orbit and baboon monitoring from hovering drones.

We chose to these as representative problems since they are ultimately the same class of problem,

that of a moving-object tracking problem. In the next chapter, Chapter 2, we examined the

algorithm we propose to solve the moving-object tracking problem. Then, in Chapter 3, we

introduced our methods of selecting parameters for Spot. Finally, in Chapter 4, we discussed the

datasets we intend to use to evaluate Spot. In this chapter, we intend to compare Spot against

existing metrics for moving-object tracking problems presented through traffic congestion

tracking. This data is provided by Yin et al. [22]. Finally, we will examine Spot as a solution to

the baboon tracking problem.

5.1 Traffic Congestion

To evaluate Spot, we execute it on each of the seven videos within the VISO dataset,

measuring the Precision, Recall, and F1-score generated by evaluating these videos.

Once we have these metrics, we can evaluate Spot many times with different parameters

to determine the best parameter set to use. As stated in Chapter 4, we will use Sherlock [8] to

perform this by finding the Pareto front for each video.
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Table 5.1. Comparison of the total sampled point count vs. the Pareto optimal point count for
the VISO dataset

Video Name Sampled Count Sampled Percent Pareto Optimal Count

Video 1 555 2.89% 40
Video 2 546 2.84% 31
Video 3 809 4.21% 31
Video 4 1526 7.95% 41
Video 5 1298 6.76% 56
Video 6 1633 8.51% 42
Video 7 1637 8.53% 29

5.1.1 Estimation of the Pareto Front

To evaluate Spot, we run Sherlock [8] on several samples, observing the results each time.

As each sample is expensive, we wish to execute the least number of samples possible to get

an accurate Pareto front. Table 5.1 lists the number of samples used to arrive at the conclusions

below. It also lists the number of Pareto optimal samples, which we will refer to as the Pareto

optimal count. As can be seen, Sherlock sampled between approximately 3% and 9% of the total

space. Contrasting this with Gautier et al. [8], which sampled 30%, it is necessary to determine

the loss in accuracy. The testing performed by Gautier et al. demonstrated that with so few

samples, we could expect an Average Distance to Reference Set (ADRS) within 10−1 from the

true Pareto front [8].

When reviewing Figure 5.1, it becomes clear that Sherlock has spent most of its time

around the Pareto front for the videos from the VISO dataset. Each graph focuses on samples

around the Pareto optimal points, with few far away from the Pareto front. This suggests that

Sherlock was able to estimate the function f accurately: Rm −→ Ro and there are unlikely to be

any significantly better-performing configurations than the ones examined here.

The Pareto front is well explored in nearly all of the videos, having a near-contiguous

collection of points. Exceptions to this are in the gaps in the Pareto front samples seen in video 3
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Figure 5.1. Plot of each of the design spaces for each video using Spot as sampled by Sherlock

and video 6. Even in these two cases, the areas of interest are well explored. Since the F1 score

is a measure of balance, it is the score most interesting when reviewing these graphs; all videos

are well explored around the middle point for their precision and recall.

Next, we will evaluate how effective parameter sets found for one video are on a different,

similar video. Figure 5.2 takes the configuration sets from Video 4 and computes them for the

remaining six videos. Here, an effective parameter set produces metrics close to the Pareto front.

Looking at the results, we can tell that many of these Pareto optimal configurations for Video 4

are also Pareto optimal or near Pareto optimal for the remaining videos, giving confidence that it

is possible to determine a parameter set for one video and then use it on like videos. This result

is ideal for leveraging Spot as part of another automation pipeline.

5.1.2 Spot Results

Now we will compare Spot to the current state of the art as presented in Yin et al. [22].

The results of this comparison can be seen in Table 5.2. This is even more straightforward to
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Table 5.2. Recall, precision, and F1 on seven videos from the VISO dataset using various
algorithms [22]. Red represents the highest score in each column and blue represents the second
highest

Method Video 1 Video 2 Video 3 Video 4
Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

FD [5] 0.58 0.19 0.29 0.79 0.25 0.38 0.80 0.25 0.39 0.69 0.22 0.33
ABM [9] 0.81 0.64 0.71 0.79 0.71 0.75 0.92 0.60 0.73 0.88 0.56 0.68

MGBS [11] 0.80 0.47 0.59 0.78 0.52 0.63 0.91 0.36 0.52 0.86 0.27 0.41
GMM [24] 0.37 0.63 0.47 0.49 0.53 0.51 0.45 0.53 0.49 0.64 0.36 0.46

AGMM [10] 0.72 0.56 0.63 0.80 0.77 0.79 0.93 0.65 0.76 0.87 0.62 0.72
VIBE [4] 0.61 0.34 0.44 0.82 0.61 0.70 0.68 0.59 0.63 0.65 0.52 0.58

FPCP [16] 0.39 0.80 0.53 0.62 0.46 0.53 0.82 0.27 0.41 0.68 0.22 0.34
GoDec [23] 0.92 0.51 0.65 0.73 0.81 0.77 0.93 0.53 0.68 0.72 0.38 0.50

DECOLOR [20] 0.24 0.92 0.38 0.77 0.88 0.82 0.89 0.83 0.86 0.44 0.93 0.60
FRMC [15] 0.55 0.68 0.62 0.57 0.21 0.31 0.61 0.21 0.32 0.63 0.17 0.27

ClusterNet [13] 0.75 0.67 0.71 0.66 0.81 0.72 0.90 0.72 0.80 0.50 0.70 0.58
DTTP [1] 0.74 0.66 0.70 0.67 0.84 0.74 0.71 0.85 0.77 0.64 0.86 0.74
D&T [2] 0.72 0.91 0.80 0.69 0.86 0.77 0.84 0.84 0.84 0.76 0.85 0.80

MMB [22] 0.83 0.84 0.84 0.83 0.89 0.85 0.94 0.88 0.91 0.85 0.86 0.86
Spot 0.50 0.63 0.56 0.72 0.69 0.71 0.71 0.61 0.65 0.65 0.86 0.74

Method Video 5 Video 6 Video 7 Average
Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

FD [5] 0.61 0.30 0.47 0.80 0.25 0.39 0.80 0.14 0.24 0.72 0.23 0.36
ABM [9] 0.77 0.61 0.68 0.83 0.50 0.62 0.03 0.13 0.04 0.72 0.54 0.60

MGBS [11] 0.74 0.39 0.51 0.78 0.24 0.36 0.03 0.13 0.05 0.70 0.34 0.44
GMM [24] 0.57 0.36 0.44 0.56 0.37 0.45 0.16 0.38 0.22 0.46 0.45 0.43

AGMM [10] 0.76 0.68 0.72 0.79 0.53 0.63 0.90 0.37 0.53 0.82 0.60 0.68
VIBE [4] 0.72 0.65 0.69 0.60 0.42 0.49 0.45 0.44 0.44 0.65 0.51 0.57

FPCP [16] 0.33 0.33 0.33 0.65 0.26 0.37 0.68 0.18 0.29 0.60 0.36 0.40
GoDec [23] 0.72 0.74 0.73 0.81 0.42 0.55 0.93 0.25 0.39 0.82 0.52 0.61

DECOLOR [20] 0.74 0.84 0.79 0.71 0.80 0.75 0.30 0.69 0.42 0.58 0.84 0.66
FRMC [15] 0.54 0.13 0.21 0.47 0.17 0.25 0.37 0.22 0.28 0.53 0.26 0.32

ClusterNet [13] 0.76 0.82 0.79 0.77 0.71 0.74 0.85 0.66 0.75 0.74 0.73 0.73
DTTP [1] 0.62 0.77 0.69 0.55 0.73 0.63 0.26 0.50 0.34 0.60 0.74 0.66
D&T [2] 0.63 0.81 0.71 0.65 0.76 0.70 0.83 0.43 0.56 0.73 0.78 0.74

MMB [22] 0.80 0.81 0.80 0.78 0.85 0.81 0.83 0.73 0.78 0.84 0.84 0.84
Spot 0.70 0.71 0.70 0.60 0.84 0.70 0.55 0.93 0.69 0.63 0.75 0.68
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Figure 5.2. The Pareto optimal points for Video 4 compared against the Pareto front for the
remaining six videos

see when comparing the average F1 scores. Spot’s average F1 matches AGMM and beats many

others, demonstrating that it can be a useful algorithm when it fits the constraints. Particularly,

Table 5.2 demonstrates that the results are fairly consistent among the videos in the VISO dataset.

Given the results previously shown in Figure 5.2 that parameter sets are portable, Spot may be a

good algorithm for previously unseen videos and environments.

Table 5.3 looks at each algorithm examined in Yin et al. [22]. Since AP scores are the

area under the curve, algorithms with higher AP values are more adaptable over a range of

parameter values. As can be seen in Table 5.3, it can be seen that Spot produces the best AP

score for Video 7. This would suggest that the precision and recall scores for Video 7 are better

than most other algorithms over a wide range of parameter sets, ensuring better results than

competing algorithms, especially not when extensively tuned.

Since the mAP score is an average of AP scores across many videos, the mAP score can

be seen as a measurement of how well an algorithm can detect moving objects in a dataset. The
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Table 5.3. AP and mAP for seven videos from the VISO dataset using various algorithms [22].
Red represents the highest score in each column and blue represents the second highest

Method Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7 mAP

FD [5] 0.26 0.55 0.51 0.47 0.44 0.55 0.28 0.44
ABM [9] 0.59 0.70 0.76 0.67 0.65 0.63 0.01 0.57

MGBS [11] 0.73 0.62 0.58 0.41 0.49 0.30 0.10 0.46
GMM [24] 0.41 0.41 0.56 0.39 0.35 0.36 0.16 0.38

AGMM [10] 0.64 0.71 0.75 0.71 0.61 0.60 0.47 0.64
VIBE [4] 0.55 0.73 0.56 0.54 0.67 0.50 0.30 0.55

FPCP [16] 0.54 0.45 0.42 0.28 0.27 0.35 0.20 0.36
GoDec [23] 0.56 0.75 0.72 0.64 0.74 0.68 0.30 0.63

DECOLOR [20] 0.42 0.73 0.81 0.56 0.75 0.72 0.52 0.64
FRMC [15] 0.51 0.22 0.23 0.20 0.11 0.14 0.13 0.22

ClusterNet [13] 0.77 0.73 0.74 0.61 0.77 0.75 0.57 0.71
DTTP [1] 0.75 0.72 0.76 0.63 0.65 0.69 0.42 0.66
D&T [2] 0.79 0.76 0.80 0.81 0.73 0.70 0.54 0.73

MMB [22] 0.88 0.84 0.95 0.89 0.81 0.77 0.73 0.84
Spot 0.53 0.71 0.65 0.74 0.76 0.74 0.72 0.69

mAP score for Spot suggests that the algorithm is better than approximately 75% of the other

algorithms, again suggesting that Spot excels in adaptability.

This is impressive since Spot was not initially designed for or optimized for this scenario,

unlike other algorithms examined here. Spot does not make any assumptions about the motion.

It may perform better on this dataset if updated to take advantage of motion assumptions like

other algorithms here. We choose not to add those assumptions to keep Spot more generic so

that it can solve a broader range of problems.

5.2 Baboon Tracking

As we do not have data for the other algorithms presented in Chapter 5, we will only

present on Spot for this dataset. As before, we will leverage Sherlock to determine the parameter

sets to sample. Again, our goal here is to estimate the Pareto front.

55



Table 5.4. Comparison of the total sampled point count vs the Pareto optimal point count for the
baboon tracking dataset

Video Name Sampled Count Sampled Percent Pareto Optimal Count

Video 1 714 3.72% 52

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Baboons Pareto Front

Samples
Pareto Optimal Samples

Figure 5.3. Plot of the design space for the dataset using Spot as sampled by Sherlock

5.2.1 Estimation of the Pareto Front

We ran Sherlock with Spot on the baboon tracking dataset and produced Table 5.4. This

indicates how many samples Sherlock chose, the overall percentage those samples represent of

the design space, and finally, the number of samples that represent the estimated Pareto front.

As previously stated in Chapter 4, data that presents unique challenges is difficult and

expensive to collect. For the sake of the evaluation, we will focus on just a single video.

Comparing the results from Table 5.4 with Table 5.1, we can see that Sherlock sampled a

similar number of points compared to the VISO dataset. Therefore, it likely has an ADRS within

10−1 from the true Pareto front.

In Figure 5.3, we can see that Sherlock is sampling near the estimated Pareto front, much

like for the VISO dataset. This demonstrates that any potentially missed portion of the Pareto

front will unlikely improve Spot’s results substantially.
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Table 5.5. Results from running Sherlock against a representative video from the baboon dataset.
The recall, precision, and F1 scores were selected by choosing the largest F1 score found by
Sherlock

Recall Precision F1 AP

0.5 0.59 0.54 0.42

5.2.2 Spot Results

In this section, we will discuss the performance of Spot for baboon tracking. As we do

not have the same baseline metrics provided by the VISO dataset, we will not compare them

against other algorithms.

Table 5.5 lists the results for Spot against the baboon tracking dataset. We can see that

this Video appears to be similar to Video 1 listed in Table 5.2 and Table 5.3 from the VISO

dataset. This suggests that, like Video 1, this video may be more difficult to process due to

environmental pseudo-motion. This means that the algorithm sensitivity has to be turned down

to ignore the pseudo-motion better.

Another possible reason it may be harder to track the animals within the video compared

to vehicles from satellite footage is that animals are lower contrast. As the animals move, they

blend in well with their environment. An additional complication is that moving animals may

become occluded by large objects within the environment. This does not happen from the

satellite footage as it is mostly highway.
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Chapter 6

Conclusion

Throughout this write-up, we focused primarily on the introduction and evaluation of

Spot. To this end, we evaluated it against the VISO and baboon tracking datasets in Chapter 5. To

aid this analysis of Spot, we introduced the idea of using Sherlock [8], a design space exploration

algorithm, to discover the best configuration parameters for a particular representative video. It

estimates the function that maps Spot’s input parameters to the metrics. When performing this

optimization, we also analyzed the importance of calculating metrics when performing design

space exploration. Our contributions around Sherlock were adapting away from its original,

intended usage of exploring the design space of FPGA design and into the space of parameter

tuning for software algorithms. We leveraged it to for finding the ideal parameter set for Spot.

We demonstrated that Spot tuned with Sherlock works well against the VISO dataset.

We further examined Spot by demonstrating it as a potential solution to the ecology problem

of tracking animals from a hovering drone as performed by Crutchfield et al. [6]. The main

contributions of this write-up overall were the introduction and evaluation of Spot as a solution

to the moving object tracking problem and Sherlock as a tool for parameter selection.

Comparisons with other algorithms performed in Chapter 5 suggest possible extensions

of the research documented here. Evaluating other algorithms against the baboon tracking

dataset would confirm that Spot is well-targeted for such a problem. In particular, we would like

to evaluate AGMM [15], ClusterNet [13], D&T [2], and MMB [22] as these four algorithms
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outperform Spot on the vehicle tracking problem. To further the evaluation of Spot, it would be

ideal to collect additional information from the field with more variety.
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